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Abstract

We study bond market completeness under infinite-dimensional models and show that, with

stochastic string models, the market is complete if we consider strategies as generalized functions.

We also obtain completeness for infinite-dimensional HJM models within the stochastic string

framework. This result is not at odds with the incompleteness obtained in Barski et al. (2011).

We design the hedging portfolio for a wide class of options. We study the Gaussian case and

find a closed formula for some compound options. Finally, we prove that the uniqueness of the

martingale measure is equivalent to a condition on the set of specific market risk premia.
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1 Introduction

Completeness, i.e., the possibility of replicating any contingent claim with a self-financing portfolio,

is a key property in theoretical finance. The equivalence between completeness and uniqueness of the

equivalent martingale measure, a result known as Second Fundamental Theorem of Asset Pricing,

holds in general securities markets with a finite number of assets (Harrison and Pliska (1981)).

In arbitrage-free models in which the price processes of the k underlying assets are driven by

n independent Wiener processes, the model is complete if and only if k = n and the volatility

matrix is invertible (Björk (2004), Proposition 14.6). So, informally, we can say that completeness

holds whenever the number of risky assets equals the number of sources of randomness. Since

continuous-time models of bond markets assume the existence of a continuum of bonds indexed

by their maturities, it seems reasonable to think that, to achieve completeness, we need to develop

models with an infinite number of sources of randomness. This was done by Björk, Di Masi, Kabanov

and Runggaldier (1997) (BDKR), Carmona and Tehranchi (2004), De Donno (2004), De Donno and

Pratelli (2004), and Barski et al. (2011), among others.

All of these papers share some common features that characterize the state of the art of complete-

ness in infinite-dimensional models. First, all of them must provide a correct definition of infinite-

dimensional portfolios and, consequently, an appropriate stochastic integration theory. BDKR con-

sider as integrators (that is, as price processes), stochastic processes that take values in C (I), with I

a compact subset of [0,+∞), and as integrands (that is, as strategies), processes that take values in

the dual of C (I), i.e., the set of Radon measures on I. In Carmona and Tehranchi (2004) the space

for the price processes is an appropriate weighted Sobolev space F , and the strategies are F ∗-valued

processes belonging to the closure (in the topology of F ∗) of the set of finite linear combinations of

Dirac deltas.

De Donno and Pratelli (2004) prove that measure-valued strategies are not sufficient to describe

all possible portfolios in the market and generalize measure-valued strategies to processes which take

values in a Hilbert space called “covariance space”. As integrators, they take cylindrical martingales

with values in a space of continuous functions. De Donno (2004) uses price processes as semimartin-

gales taking values in C ([0, 1]) and defines generalized integrands as limits, in the set of operators in

C ([0, 1]), of finite linear combinations of Dirac deltas (the simple integrands). Barski et al. (2011)

assume that discounted price processes take values in the Sobolev space G = H1
[
0, T̂

]
, being T̂ the

finite time horizon, and consequently, strategies are G∗-valued processes.

One of the important features in the study of completeness with infinite-dimensional models is

the fact that if we want our model to explain the “real” portfolios, the strategies proposed have to

nest strategies consistent in a finite number of bonds. In the papers just mentioned this is obtained

by taking into account that in all cases a strategy can be approximated by finite linear combinations
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of Dirac measures. In our paper, we will introduce a new approach for modeling infinite-dimensional

portfolios. We will not need to use sophisticated techniques of functional analysis. It will suffice

to employ a classical topic from this field: Schwartz’s Distribution Theory (Schwartz (1966)). By

taking strategies as generalized functions, we will use Dirac deltas and we will not need to develop

a new stochastic integration theory.

The second common feature of these papers is that none of them demonstrate the completeness

of the market. At most, they attain approximate completeness, i.e., they are able to find a sequence

of hedgeable contingent claims that converges in some sense to every contingent claim. To the

best of our knowledge, this characteristic is shared by all general infinite-dimensional models in the

literature (see, for example, Björk, Kabanov and Runggaldier (1997) (BKR) and Taflin (2005)). In

contrast, in this paper we obtain market completeness within the model and we are able to show

explicitly the replicating strategy.

In some papers (BDKR, BKR, Barski et al. (2011)) the completeness of the market is related to

the surjectiveness of certain operators, called hedging operators in BDKR and BKR. We elaborate on

this operational approach below. Other authors obtain conditions under which a contingent claim

can be hedged and study the possibility of natural strategies in infinite-dimensional models, i.e.,

strategies composed of bonds with maturities less than or equal to the longest maturity of the bonds

underlying the claim (Barski et al. (2011)).

Carmona and Tehranchi (2004) pointed out a problem related to multi-factor HJM models: every

contingent claim can be hedged by a portfolio of bonds with arbitrary maturities chosen a priori.

This is contrary to what traders do in practice, since hedging portfolios are related to the contingent

claim being hedged. These authors propose an infinite-dimensional Markovian HJM model and show

that, for Lipschitz claims, there exists a hedging strategy consisting of bonds with maturities that

are less than or equal to the longest maturity of the bonds underlying the claim. De Donno and

Pratelli (2004) also address this problem within the Gaussian framework of Kennedy (1994). They

find that a contingent claim on a finite number of bonds can be replicated with a portfolio based on

the same bonds and on the bank account.

As an example and without any further assumption, we obtain explicitly a replicating strategy

for a very general type of European contingent claims. This strategy consists only of bonds with the

same maturities of the bonds underlying the claim.

The third common characteristic in the papers mentioned earlier is that the Second Fundamental

Theorem is no longer true for general infinite-dimensional models. The uniqueness of the martingale

measure is equivalent only to approximate completeness (BDKR, De Donno and Pratelli (2004)).

It is also shown in other papers as BKR and Jarrow and Madam (1999).1 Taking into account
1Jarrow and Madam (1999) prove a version of the Second Fundamental Theorem that states the equivalence between
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these results, we study the uniqueness of the equivalent martingale measure regardless of market

completeness. We obtain a new result relating uniqueness with the set of possible specific market

prices of risk.

To summarize, the main objective of this paper is to state the completeness of the bond market

under the stochastic string framework with distribution-valued strategies.

The paper is organized as follows. Section 2 presents the necessary definitions about distributions

and portfolios. Section 3 states the main results of completeness for stochastic string models and for

HJM models within them. Explicit formulas for the hedges are obtained when it is possible. Section

4 is dedicated to the hedging of European options with degree-one homogeneous payoff functions. In

the Gaussian case explicit formulas are obtained and they are applied to the hedging and pricing of

call on call options. In Section 5 the uniqueness of the martingale measure in the stochastic string

model is studied. It is shown that uniqueness is equivalent to a condition on the form of the possible

specific market risk premia. Finally, the main conclusions are presented in Section 6.

2 Definitions

We start by stating some well known concepts related to distribution theory.

Definition 1 Let Ω ⊂ R be an open subset. The set of test functions over Ω, D (Ω), is the linear

space of infinitely derivable real functions with compact support included in Ω. The set D (Ω) can

be equipped with a notion of convergence that makes it a complete locally convex topological vector

space. Its topological dual, D′ (Ω), is called the space of distributions over Ω.

For every function u locally integrable in Ω, the map Tu : D (Ω) → R defined by Tu (ϕ) =∫
Ω u(x)ϕ(x)dx is a distribution over Ω. The reciprocal is not true in general. If T ∈ D′ (Ω), there is

no guarantee that there exists a function v : Ω → R such that the action of T can be written in the

form

T (ϕ) =
∫

Ω
v(x)ϕ(x)dx (1)

Nevertheless, by abuse of notation, it is usual in many applications of distribution theory to write

every distribution in the form (1) and to identify the distribution T with the so called generalized

function v. A typical example is the distribution called Dirac delta, defined by Tδa (ϕ) = ϕ (a), with

a ∈ Ω that usually is written as Tδa (ϕ) =
∫
Ω δ (x− a) ϕ (x) dx. We will follow this abuse of notation

because it simplifies the calculus and helps us to obtain more financial intuition when working with

infinite-dimensional portfolios.

uniqueness of the martingale measure and market completeness just if a certain fundamental operator is open. We will

return to this result in Section 5.
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Now we adapt to our purposes some of the definitions of BKR related to bond portfolios.

Definition 2 A portfolio in the bond market is a pair {gt, ht} where

a) g is a predictable process.

b) For each ω, t, ht (ω, ·) is a generalized function in (0,+∞).

c) For each T , the process h (T ) is predictable.

The intuition behind the previous definition is that gt is the number of units of the risk-free asset

in the portfolio at time t, whereas ht (T ) dT is the “number” of bonds with maturities between T

and t + dT hold at time t in the same portfolio.

Definition 3 The value process, V , of a portfolio {g, h} is defined by

Vt = gtBt +
∫ ∞

T=t
P (t, T ) h (t, T ) dT (2)

where Bt is the risk-free asset or bank account process and P (t, T ) is the price, at time t, of a

zero-coupon bond maturing at T .

Definition 4 A portfolio is self-financing if its value process satisfies

dVt = gtdBt +
∫ ∞

T=t
h (t, T ) dP (t, T ) dT

The previous definition is only formal by now and will be meaningful below.

Applying Itô’s rule to the process V t = VtB
−1
t we obtain the following result that allows us to

write the self-financing condition in terms of discounted processes.

Lemma 1 The following conditions are equivalent:

i) dVt = gtdBt +
∫ ∞

T=t
h (t, T ) dP (t, T ) dT .

ii) dV t =
∫ ∞

T=t
h (t, T ) dP (t, T ) dT , where V t and P (t, T ) are the respective processes discounted

with respect to Bt.
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3 Completeness

In this section we will study market completeness under the stochastic string model of Bueno-

Guerrero et al. (2014a)

Definition 5 Consider a discounted contingent claim X ∈ L∞ (FT0). We say that X can be repli-

cated or that we can hedge against X if there exists a self-financing portfolio with bounded,discounted

value process V , such that V T0 = X. If every X ∈ L∞ (FT0) can be replicated, for every T0, the

market is said to be complete.

By Lemma 1, the hedging problem for X is reduced to find, for each t, a generalized function

ht (·) such that

dV t =
∫ ∞

T=t
h (t, T ) dP (t, T ) dT ≡ ϕt

(
dP t

P t

)
(3)

and

V T0 = X (4)

Before solving this problem, we need the following assumption that contains the regularity con-

ditions of the bond price process.

Assumption 1 The discounted bond return as a function of maturity belongs to the space D (t, +∞).

Bueno-Guerrero et al. (2014a) show (Proof of Theorem 9) that the dynamics of P (t, T ) is given

by

dP (t, T ) = −P (t, T )
∫ T−t

y=0
dZ̃(t, y)dyσ(t, y) (5)

This allows us to write (3) in the more compact form

dV t = ϕt

[
Γt

(
dZ̃t

)]
(6)

where the operator Γt is given by

Γt (gt) = −
∫ ·−t

y=0
dyg (t, y) σ (t, y) (7)

On the other hand, the portfolio value process is given by Vt = EQ
{

VT0e
−

R T0
t dsr(s) |Ft

}
, from

where V t = EQ {X |Ft

}
, that is a martingale under the equivalent martingale measure Q. By the

martingale representation assumption in Bueno-Guerrero et al. (2014a) (Assumption 4.6), we have

that

dV t =
∫ ∞

u=0
dZ̃ (t, u) duj (t, u) (8)
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with j (t, u) an adapted predictable process for each u.

Joining (6) and (8) we have

ϕt

[
Γt

(
dZ̃t

)]
=
∫ ∞

y=0
dZ̃ (t, y) dyj (t, y) (9)

that can be rewritten as

ϕt

[
Γt

(
dZ̃t

)]
=
∫ ∞

y=0

[
Γ−1

t

(
Γt

(
dZ̃t

))]
(y) dyj (t, y) (10)

From the definition of the operator Γt, expression (7), it is easy to show that its inverse, Γ−1
t , is

given by [
Γ−1

t (qt)
]
(y) = − 1

σ (t, y)
q′t (t + y) ∀qt ∈ Im Γt

that makes sense because σ > 0 in the stochastic string modeling. Substituting this expression in

(10) and using (7), we have

ϕt

(
dP t

P t

)
= −

∫ ∞

y=0

(
dP t

P t

)′
(t + y)

j (t, y)
σ (t, y)

dy

= −
∫ ∞

T=t

(
dP t

P t

)′
(T )

j (t, T − t)
σ (t, T − t)

dT

=
∫ ∞

T=t

(
dP t

P t

)
(T )

[
j (t, T − t)
σ (t, T − t)

]′
dT

where in the last equality we have taken into account Assumption 1 and the definition of the gener-

alized derivative. Comparing with expression (3) we arrive at the following result.

Theorem 1 In the stochastic string model of Bueno-Guerrero et al. (2014a), the generalized func-

tion ht (·), solution of (3)-(4), is given by

h (t, T ) =
1

P (t, T )

[
j (t, T − t)
σ (t, T − t)

]′
(11)

where the symbol ′ means derivative with respect to T in the sense of distributions and j (t, ·) is given

by the martingale representation of V t

dV t =
∫ ∞

u=0
dZ̃(t, u)duj(t, u) (12)

and Z̃(t, u) is the stochastic string process with respect to the equivalent martingale measure.

Corollary 1 In the stochastic string framework of Bueno-Guerrero et al. (2014a) the market is

complete.
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3.1 Completeness of infinite-dimensional HJM models

We have just obtained market completeness within the stochastic string modeling. Bueno-Guerrero

et al. (2014b) showed that, under some conditions, infinite-dimensional HJM models are particular

cases of the stochastic string framework. So this type of models must verify market completeness

too. Nevertheless, in a recent paper, Barski et al. (2011) show that the market is not complete in

infinite-dimensional HJM models. In this section, we study this apparent contradiction.

Barski et al. (2011) work with an infinite-dimensional HJM model given by the forward curve

dynamics

df (t, T ) = α (t, T ) dt +
∞∑
i=1

σi (t, T ) dW i(t)

where W (t) =
(
W 1(t),W 2(t), . . .

)
is a cylindrical Wiener process in l2. These authors demonstrate

that P is a martingale with values in G = H1
[
0, T̂

]
, and, consequently, they take admissible

strategies as G∗-valued processes. Their main result of market incompleteness is obtained by proving

that there exists bounded random variables that cannot be replicated with admissible strategies.

They also show that the market is complete if we enlarge the class of admissible strategies to

processes stochastically integrable with respect to P , and if the operator ΓBJZ
t : l2 → G given by

(
ΓBJZ

t u
)
(T ) = −P (t, T )

∞∑
i=1

[∫ T

y=0
dyσi (t, y)

]
ui, u ∈ l2

is injective. The operator ΓBJZ
t verifies dP (t, T ) =

(
ΓBJZ

t dWt

)
(T ), i.e., it maps the infinite-

dimensional stochastic shock into the discounted price change, thus, it plays a role in infinite-

dimensional HJM models similar to the role played by the operator Γt in our stochastic string

model. The main difference between the two approaches is that it is not possible in general to invert

the operator ΓBJZ
t as we did with our Γt. Moreover, it is easy to see that a sufficient condition for

Ker ΓBJZ
t = {0} is that

{
σi

t

}∞
i=0

is a linearly independent set. Barski et al. (2011) take advantage of

this to give an example of model with orthogonal (and consequently linearly independent) volatilities

that is complete. We will see below that orthogonality is the key property in infinite-dimensional

HJM models to obtain completeness.

Before stating the completeness result we need to review some concepts from Bueno-Guerrero et

al. (2014b). They show that the infinite-dimensional process ZP (t, x) defined by

dZP (t, x) =
∞∑
i=0

σ
(i)
HJM (t, x)
σ(t, x)

dWi(t) (13)

is a stochastic string shock if some regularity conditions over the σ
(i)
HJM (t, x) are fulfilled. With this

process, a stochastic string model with volatility σ(t, x) is transformed into an infinite-dimensional
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HJM model with volatilities σ
(i)
HJM (t, x).2 It is also proved that the volatilities can be written as

σ
(i)
HJM (t, x) =

√
λt,ift,i (x) where {λt,i}∞i=0 and {ft,i}∞i=0 are, respectively, the eigenvalues and the

corresponding orthonormal eigenfunctions of the Hilbert-Schmidt integral operator LRt defined in

L2 (R+) by

LRtf (x) =
∫ ∞

y=0
dyRt(x, y)f(y)dy

where Rt (x, y) is the instantaneous conditional covariance between shocks to the forward curve.3

Moreover, the volatilities are orthogonal in L2 (R+) verifying
〈
σ

(i)
HJM,t, σ

(j)
HJM,t

〉
L2(R+)

= λt,iδi,j .

We can now state the following result.

Theorem 2 Under infinite-dimensional HJM models obtained within the stochastic string frame-

work, the market is complete. Moreover, if the operators LRt are injective, then the hedging strategy

is given by

h (t, T ) =
1

P (t, T )

∞∑
i=0

ji (t)
λt,i

σ
′(i)
HJM (t, T ) (14)

where λt,i are the eigenvalues of LRt, σ
(i)
HJM (t, T ) are the HJM volatilities in the maturity pa-

rameterization, j (t) = (j0 (t) , j1 (t) , . . .) is a predictable l2-valued process given by the martingale

representation

dV t =
〈
j (t) , dW̃ (t)

〉
l2

and W̃ (t) is cylindrical Wiener process with respect to the equivalent martingale measure.

Proof: See the Appendix.

4 Hedging contingent claims

In this section we apply Theorem 1 to obtain a hedging portfolio for a very general type of European

options. The main result is the following.

Proposition 1 The contingent claim determined by

XT0 = [Φ (PT0)]+ ≡ [Φ (P (T0, T0) , . . . , P (T0, Tn))]+

with Φ : Rn+1 −→ R an homogeneous function of degree one, can be replicated by a portfolio composed

by ni(t) bonds with maturities Ti, i = 0, . . . , n, with

ni(t) = EQTi

{
∂Φ (y)

∂yi

∣∣∣∣
y=PT0

1Φ(PT0)>0

∣∣∣∣∣Ft

}
, t ≤ T0 (15)

2It is understood that we work in the Musiela parameterization.
3Bueno-Guerrero et al. (2014b) actually work with L2

p

`
R+

´
for consistency purposes. It is not difficult to check

that all in this paper could be done working with L2
`
R+

´
.
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Proof: See the Appendix.

Corollary 2 Under the conditions of Proposition 1, if ∂Φ(y)
∂yi

∣∣∣
y=PT0

is Ft-measurable, then

ni (t) =
∂Φ (y)

∂yi

∣∣∣∣
y=PT0

QTi {Φ (PT0) > 0| Ft} , t ≤ T0

i.e., the number of bonds with maturity Ti in the hedging portfolio is proportional to the conditional

probability under the Ti-forward measure of the event that the derivative ends up in the money.

Note that usually the measurability condition on the partial derivative is satisfied when ∂Φ(y)
∂yi

∣∣∣
y=PT0

is a constant independent of PT0 .

In the Gaussian case it is possible to obtain a closed formula for nj(t) as is shown in the following

result.

Proposition 2 If σ(t, x) and c(t, x, y) are deterministic, then

nj(t) =
∫

It

dNxg

(
x1 −

∆1i√
∆11

, · · · , xn −
∆ni√
∆nn

;M
)

∂Φ (y)
∂yj

∣∣∣∣
y=PT0

(t,x)

where

g (x1, . . . , xN ;M) =
1√

(2π)N |M |
exp

−1
2

N∑
i,j=1

xi

(
M−1

)
ij

xj


is the density function of a multivariate normal random variable, M is the correlation matrix given

by (M)kl =
∆kl√

∆kk

√
∆ll

, k, l = 1, . . . , N with

∆ij (t, T0) =
∫ T0

s=t
ds

[∫ Ti−s

y=T0−s

∫ Tj−s

u=T0−s
dyduRs(u, y)

]
and

PT0 (t,x) =
(

1, e
√

∆11x1− 1
2
∆11

P (t, T1)
P (t, T0)

, · · · , e
√

∆NNxN− 1
2
∆NN

P (t, TN )
P (t, T0)

)
It = {x ∈ Rn : Φ (PT0 (t,x)) > 0}

Proof: See the Appendix.
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Corollary 3 Under the conditions of Corollary 2 and Proposition 2 it is verified that

nj(t) =
∂Φ (y)

∂yj

∣∣∣∣
y=PT0

∫
It

dNxg

(
x1 −

∆1i√
∆11

, · · · , xn −
∆ni√
∆nn

;M
)

and in this case

QTi {Φ (PT0) > 0| Ft} =
∫

It

dNxg

(
x1 −

∆1i√
∆11

, · · · , xn −
∆ni√
∆nn

;M
)

Some derivatives belonging to the class treated in this section are already priced under the

stochastic string Gaussian model. For example, call options in Bueno-Guerrero et al. (2014a, b) and

caps and swaptions in Bueno-Guerrero et al. (2014c). Concretely, the price at time t of a European

call option that matures at time T0 with strike K written on a zero-coupon bond that matures at

time T > T0 is given by

CallK [t, T0, T ] = P (t, T )N [d1 (t, T0, T )]−KP (t, T0)N [d2 (t, T0, T )]

where N (·) denotes the distribution function of a standard normal random variable with

d1 (t, T0, T ) =
ln
(

P (t, T )
KP (t, T0)

)
+

1
2
Ω (t, T0, T )√

Ω (t, T0, T )
, d2 (t, T0, T ) = d1 −

√
Ω (t, T0, T )

and

Ω (t, T0, T ) =
∫ T0

v=t
dv

[∫ T−v

y=T0−v

∫ T−v

w=T0−v
dydwRv (u, y)

]
To end this section we will hedge (and price) a compound option, another derivative with ho-

mogeneous payoff function of degree one. For illustration purposes, the next example shows the

computations for a call on a call.4

Example 1 Consider a European call option with maturity T0 and strike KC on another European

call option maturing at T1 > T0 and strike K written on a zero-coupon bond with maturity T2 > T1.

Let CoC (t, T0, T1, T2) denote the price at time t of this option. Given its payoff we have

Φ [P (T0, T0) , P (T0, T1) , P (T0, T2)] = CallK [T0, T1, T2]−KCP (T0, T0)

= P (T0, T2)N [d1 (T0, T1, T2)]−KP (T0, T1)N [d2 (T0, T1, T2)]

−KCP (T0, T0)

4Other types of compound options can be priced and hedged in a similar way.
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from where we obtain

∂Φ (y)
∂y0

∣∣∣∣
y=PT0

= −KC ,
∂Φ (y)

∂y1

∣∣∣∣
y=PT0

= −KN [d2 (T0, T1, T2)] ,
∂Φ (y)

∂y2

∣∣∣∣
y=PT0

= N [d1 (T0, T1, T2)]

So by Proposition 1 and Corollary 3 we obtain

CoC (t, T0, T1, T2) =
2∑

i=0

ni (t) P (t, Ti)

with

n0(t) = −KC

∫ +∞

−∞
dx1

∫ +∞

lt

dx2g (x1, x2;M)

n1(t) = −KN [d2 (T0, T1, T2)]
∫ +∞

−∞
dx1

∫ +∞

lt

dx2g

(
x1 −

√
∆11, x2 −

∆21√
∆22

;M
)

n2(t) = N [d1 (T0, T1, T2)]
∫ +∞

−∞
dx1

∫ +∞

lt

dx2g

(
x1 −

∆12√
∆11

, x2 −
√

∆22;M
)

and

lt =
1√
∆22

(
∆22

2
+ ln

(
KCP (t, T0) + KP (t, T1) e

√
∆11x1− 1

2
∆11N [d2 (T0, T1, T2)]

P (t, T2)N [d1 (T0, T1, T2)]

))

5 Uniqueness of the equivalent martingale measure

In this section we state the conditions under which the equivalent martingale measure is unique in

the stochastic string model of Bueno-Guerrero et al. (2014a). We review all that we need from this

paper.

Bueno-Guerrero et al. (2014a) start from the following dynamics for the instantaneous forward

interest rate f(t, x) in the Musiela parameterization

df(t, x) = α(t, x)dt + σ(t, x)dZ(t, x)

with σ > 0 and where Z (t, x) is the stochastic string process. To guarantee the absence of arbitrage,

they assume the existence of a martingale measure Q equivalent to the physical probability P. By

defining the martingale

ηt = EP
[
dQ
dP

|Ft

]

12



they find that it can be expressed as ηt = ε (N)t, where ε is the stochastic exponential and

Nt = −
∫ t

v=0

∫ ∞

u=0
dZ(v, u)duλ(v, u) (16)

being λ (v, u) the specific market price of risk associated with time to maturity u.

Finally, they find the relationship between stochastic string shocks under the two probability

measures

dZQ(t, y) = dZP(t, y) + dt

∫ ∞

u=0
duc(t, u, y)λ(t, u)

and the no-arbitrage condition

α(t, x) =
∂f(t, x)

∂x
+ σ(t, x)

[∫ x

y=0
dyc(t, x, y)σ(t, y) +

∫ ∞

y=0
dyc(t, x, y)λ(t, y)

]
(17)

where c(t, x, y) is the correlation between stochastic string shocks.

Before addressing the main result of this section, it is interesting to study why the two concepts

of completeness and uniqueness of the martingale measure are unrelated in our model, whereas in

other papers they are related though duality relations. We will do so by comparing our approach

with the ones proposed in BKR and Jarrow and Madam (1999).

BKR define a pair of (families of) adjoint operators called martingale operators, χBKR,t, and

hedging operators, χ∗BKR,t. They show that Q is unique if and only if χBKR is injective and that the

market is complete if and only if χ∗BKR is surjective. Using the duality relation (Ker χ)⊥ = cl (Im χ∗)

they also obtain the equivalence between uniqueness of the martingale measure and approximate

completeness.

In our model, replacing (8) and (5) in (3) we have

−
∫ ∞

T=t
h (t, T )

[
P (t, T )

∫ T−t

y=0
dZ̃(t, y)dyσ(t, y)

]
dT =

∫ ∞

y=0
dZ̃(t, y)dyj(t, y)

that can be written as

−
∫ ∞

y=0
dZ̃(t, y)dyσ(t, y)

[∫ ∞

T=t+y
h (t, T )P (t, T ) dT

]
=
∫ ∞

y=0
dZ̃(t, y)dyj(t, y)

from where we obtain

−σ(t, y)
∫ ∞

T=t+y
h (t, T )P (t, T ) dT = j(t, y)

So, we can define the operator

χ∗t : D′ (0,+∞) −→ D′ (0,+∞)

mt 7−→ −σ (t, ·)
∫ bT

T=t+·
m (t, T ) P (t, T ) dT

13



that is the analogous to the hedging operator in our framework. We know from the completeness of

our model, Theorem 1, that χ∗t is suprajective.

The operator χ∗t is the adjoint of the operator

χt : D (]0,+∞[) −→ D (]0,+∞[)

Ωt 7−→ −σ (t, ·) P (t, T ) Ω (t, ·)

that is the martingale operator in our setting. This operator is clearly injective and we can obtain

[Θtλt] (x) =
∫∞
y=0 dyc (t, x, y) λ (t, y) as the unique solution of the no-arbitrage condition, equation

(17).

Until now the parallelism with BKR is complete. But, in their paper, the injectiveness of χBKR

allows them to identify uniquely the martingale measure. Nevertheless, in our model, to this end,

we need to identify λ (t, y), that can not be obtained uniquely unless Θt is injective.

Jarrow and Madam (1999) develop a very general model to study the relationship between market

completeness and uniqueness of martingale measures. They define the so called fundamental drift

operator, TJM , that maps the space of potential measures M into the space of excess mean returns

X, and show that injectiveness of this operator is equivalent to uniqueness of signed local martingale

measures. Using the theory of linear operators between locally convex topological vector spaces, they

obtain a version of the Second Fundamental Theorem that states the equivalence between uniqueness

of signed martingale measures and quasicompleteness, and that if TJM is an open mapping, then

uniqueness is equivalent to completeness.

Nevertheless, to take advantage of this approach, we had to work, as in Jarrow and Madam

(1999), with time-independent operators acting on spaces of processes. Instead, like BKR or Barski

et al. (2011), in this paper we work with families of operators (indexed by t) taking values in

functional spaces.

From what we have said above, it is clear that the equivalent martingale measure is unique if

and only if the equation (17) has a unique solution for λ (t, u). To study the conditions in which

this is possible, we define, for each t, the integral operator Θt : Ht → Ht given by

[Θtλt] (x) =
∫ ∞

y=0
dyc (t, x, y) λ (t, y)

where Ht, the set of possible specific market prices of risk, is for each t, a Hilbert subspace of L2 (R+)

that we have to find with the condition that Θt be injective.

As c (t, x, y) is a correlation function for each t, Θt is a compact self-adjoint operator because it

is a Hilbert-Schmidt integral operator with symmetric kernel. This property allows us to state the

following result.

14



Theorem 3 The equivalent martingale measure is unique if and only if the possible specific market

prices of risk can be expressed as Fourier series of the eigenfunctions of Θt.

Proof: See the Appendix.

In our model, the analog to the fundamental operator in Jarrow and Madam (1999) is Θt. The

equivalent martingale measure is unique if and only if Θt is injective and, in this case, Θt is also

suprajective because Ht = Im Θt ⊕ Ker Θt. As Θt is a bounded linear application between two

Banach spaces, it is also open by the Open Mapping Theorem.5

6 Conclusions

It is well known that the market is complete under multi-factor HJM models. However, infinite-

dimensional HJM models, in general, do not have this property, as shown by Barski et al. (2011).

This lack of completeness is a characteristic shared by many other models. As a consequence, we

might think that the infinite-dimensional modeling of interest rates is not compatible with mar-

ket completeness. In this paper, we show that this is not the case. We demonstrate that in the

infinite-dimensional stochastic string model, the market is complete when we take distribution-valued

processes as trading strategies. In our model, these two issues are necessary to obtain complete-

ness. The stochastic string modeling allows us to obtain explicitly the inverse of the operator that

maps stochastic shocks into bond returns and the use of distributions is key to identify the hedging

strategy. Although it is not the main objective of this paper, we obtain market completeness for

infinite-dimensional HJM models within the stochastic string framework, showing the importance of

this approach. The orthogonality of HJM volatilities, that is verified in stochastic string models, is

the characteristic needed to obtain completeness.

As an application of the completeness result, we provide a hedging strategy for options with

payoff functions that are homogeneous of degree one. This strategy simply consists of holding bonds

with the same maturities as the bonds underlying the option. This is a property of the infinite-

dimensional modeling not shared with multi-factor models in which the maturities can be stated a

priori, as noted by Carmona and Tehranchi (2004). We obtain the hedging strategy without the

need to use any version of the Clark-Ocone formula of the Malliavin calculus.

Although the uniqueness of the martingale measure is not required by our fundamental result of

completeness, we also study uniqueness in the stochastic string framework. We obtain a result of

equivalence between uniqueness of the martingale measure and the representation of specific market

risk premia as Fourier series of the eigenvalues of certain integral operator similar to the fundamental
5Our model fits with the Jarrow and Madam framework by just interchanging their dual pair (X, Y) by our pair

(D,D′). However, we think that our approach is financially more sound because it uses specific market prices of risk.
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operator of Jarrow and Madam (1999). Moreover we show that this property is equivalent to

the property that the operator be an open application, a condition necessary for the equivalence

between uniqueness and completeness in the version of the Second Fundamental Theorem of these

last authors.
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Appendix of Proofs

Proof of Theorem 2

In the infinite-dimensional HJM setting, the equation (9) is written as

ϕt

[
Γ̂BJZ

t

(
dW̃ (t)

)]
=
〈
j (t) , dW̃ (t)

〉
l2

(18)

with Γ̂BJZ
t ≡ 1

P (t,T )
ΓBJZ

t . Differentiating with respect to T in the equation
[
Γ̂BJZ

t u
]
(T ) = 0 we

obtain
∑∞

i=0 σ
(i)
HJM (t, T ) ui = 0. As HJM volatilities are orthogonal within the stochastic string

framework, we have that
{

σ
(i)
HJM,T

}∞
i=0

is a linearly independent set and thus we have u = 0. So

Γ̂BJZ
t are injective and we can rewrite (18) as

ϕt

[
Γ̂BJZ

t

(
dW̃ (t)

)]
=
〈

j (t) ,

[(
Γ̂BJZ

t

)−1
Γ̂BJZ

t

](
dW̃ (t)

)〉
l2

If we take into account that for infinite-dimensional HJM models it is verified that

dP t

P t

= −
∞∑
i=0

[∫ T

y=0
dyσ

(i)
HJM (t, y)

]
dW̃i (t) = Γ̂BJZ

t

(
dW̃ (t)

)
we can define the functional ϕt given by

ϕt [vt] =
〈

j (t) ,
(
Γ̂BJZ

t

)−1
vt

〉
l2

, vt ∈ Im Γ̂BJZ
t ⊂ D (0,+∞)

As ϕt ∈ D′ (0,+∞), there exists a generalized function h (t, T ), such that

ϕt

(
dP t

P t

)
=
∫ ∞

T=t
h (t, T ) dP (t, T ) dT =

〈
j(t), dW̃ (t)

〉
l2

We have just proved that the market is complete. To obtain the formula (14) we first need to

obtain the relationship between martingale representations in the stochastic string and the infinite-

dimensional HJM frameworks. Equating both representations of dV t and using equation (13), we

obtain
∞∑
i=0

[∫ ∞

y=0
dy

j(t, y)
σ(t, y)

σ
(i)
HJM (t, y)

]
dW̃i(t) =

∞∑
i=0

ji(t)dW̃i(t)

from which we arrive at

ji (t) =
∫ ∞

y=0
dy

j (t, y)
σ (t, y)

σ
(i)
HJM (t, y) , i = 0, 1, . . . (19)

The operator LRt is a compact self-adjoint operator because it is a Hilbert-Schmidt integral operator

with symmetric kernel. By the Spectral Theorem for compact self-adjoint operators, L2 (R+) =

Im LRt ⊕ Ker LRt and every gt ∈ L2 (R+) can be written uniquely as gt =
∑∞

i=0 (fi,t, gt) fi,t + vt
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with {fi,t}∞i=0 an orthonormal basis of Im LRt formed by eigenfunctions of LRt and vt ∈ Ker LRt .

So, as LRt is injective, L2 (R+) = Im LRt and {fi,t}∞i=0 =
{

1√
λt,i

σ
(i)
HJM,t

}∞
i=0

is an orthonormal basis

of L2 (R+). Rewriting (19) as

ji (t)√
λt,i

=

〈
jt

σt
,
σ

(i)
HJM,t√

λt,i

〉
L2(R+)

, i = 0, 1, . . .

we can obtain
jt

σt
=

∞∑
i=0

ji (t)
λt,i

σ
(i)
HJM,t

and, using (11), we arrive at

h (t, T ) =
1

P (t, T )

[ ∞∑
i=0

ji (t)
λt,i

σ
(i)
HJM,t (T − t)

]′
=

1
P (t, T )

∞∑
i=0

ji (t)
λt,i

σ
′(i)
HJM,t (t, T )

Proof of Proposition 1

Under the conditions of the proposition, Bueno-Guerrero et al. (2014b) provide the following equality

EQ
{

e−
R T0

s=t dtr(s) [Φ (PT0)]+
∣∣∣Ft

}
=

N∑
i=0

P (t, Ti) EQTi

{
∂Φ (y)

∂yi

∣∣∣∣
y=PT0

1Φ(PT0)>0

∣∣∣∣∣Ft

}
(20)

and dividing by B(t) we arrive at

V t =
n∑

i=0

ni (t) P (t, Ti) (21)

By its definition, ni (t) is a martingale under QTi and by the martingale representation assumption,

we can write

ni (t) = ni (0) +
∫ t

s=0

∫ ∞

y=0
dZ̃Ti (s, y) dygi (s, y) , t ≤ T0

with gi (s, y) undetermined. Passing to the equivalent martingale measure we have

ni (t) = ni (0) +
∫ t

s=0

∫ ∞

y=0

∫ Ti−s

x=0
dsdydxc (s, x, y) σ (s, x) gi (s, y) +

∫ t

s=0

∫ ∞

y=0
dZ̃ (s, y) dygi (s, y)

or in differential form

dni (t) =
∫ ∞

y=0

∫ Ti−t

x=0
dydxc (t, x, y) σ (t, x) gi (t, y) dt +

∫ ∞

y=0
dZ̃ (t, y) dygi (t, y)

20



Applying the product rule and reducing we have

ni(t)P (t, Ti) =
∫ t

s=0
ni(s)dP (s, Ti) +

∫ t

s=0
P (s, Ti) dni (s) +

[
P (·, Ti) , ni (·)

]
t

=
∫ t

s=0
P (s, Ti)

∫ ∞

y=0
dZ̃(s, y)dy [gi(s, y)− ni (s) σ(s, y)1y<Ti−s]

from which we obtain the expression

V t =
∫ t

s=0

∫ ∞

y=0
dZ̃ (s, y) dy

[
n∑

i=0

gi (s, y) P (s, Ti)− σ (s, y)
n∑

i=0

ni (s)P (s, Ti)1y<Ti−s

]

that allows us to identify j (t, y) in the martingale representation (12) as

j (t, y) =
n∑

i=0

gi (t, y) P (t, Ti)− σ (t, y)
n∑

i=0

ni (t) P (t, Ti)1y<Ti−t

Substituting the value of j (t, y) given by the previous expression in (11) and using that (1T<Ti)
′ =

−δ (T − Ti) we obtain

h (t, T ) =
1

P (t, T )

n∑
i=0

[
gi (t, T − t)
σ (t, T − t)

]′
P (t, Ti) +

n∑
i=0

ni (t) δ (T − Ti) (22)

The value process of the hedging portfolio (self-financing by Theorem 1) is obtained by substituting

(22) in (2) to get

Vt = gtBt +
n∑

i=0

gi (t, T − t)
σ (t, T − t)

]∞
T=t

P (t, Ti) +
n∑

i=0

ni (t) P (t, Ti)

or, dividing by Bt

V t = gt +
n∑

i=0

gi (t, T − t)
σ (t, T − t)

]∞
T=t

P (t, Ti) +
n∑

i=0

ni (t)P (t, Ti)

If we compare this expression with (21), we have that

gt +
n∑

i=0

gi (t, T − t)
σ (t, T − t)

]∞
T=t

P (t, Ti) = 0

so that the first term in the right hand side of (22) eliminates the bank account part of the hedging

portfolio.
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Proof of Proposition 2

Following Bueno-Guerrero et al. (2014b), we define for i = 1, . . . , N, j = 0, 1, . . . , N , the variables

x′ij (t, T0) ≡
lnP (T0, Ti)− ln

P (t, Ti)
P (t, T0)

−∆ij (t, T0) +
1
2
∆ii (t, T0)√

∆ii (t, T0)

that, under QTj , x′ij (s, T0) have a conditional standard normal distribution. Writing the expectation

in (15) in terms of the new variables x′ij we have

nj (t) =
∫ +∞

−∞
dNx′jg

(
x′1j , . . . , x

′
Nj ;M

) ∂Φ (y)
∂yj

∣∣∣∣
y=PT0

1Φ(PT0)>0

where M is the correlation matrix given by (M)kl = corr
(
x′kj , x

′
lj

)
=

∆kl√
∆kk

√
∆ll

, k, l = 1, . . . , N

and Φ (PT0) is explicitly expressed in terms of x′ij by

Φ (PT0) = Φ
[
1, e

√
∆11x′

1j+∆1j− 1
2
∆11

P (t, T1)
P (t, T0)

, · · · , e
√

∆NNx′
Nj+∆Nj− 1

2
∆NN

P (t, TN )
P (t, T0)

]

Making the change of variable xi ≡ x′ij +
∆ij√
∆ii

, i = 1, . . . , N , we have

nj(t) =
∫ +∞

−∞
dNxg (x1, . . . , xN ;M) e

√
∆jjxj− 1

2
∆jj

∂Φ (y)
∂yj

∣∣∣∣
y=PT0

1Φ(PT0)>0

and applying the identity g (x1, . . . , xn;M) e
√

∆iixi− 1
2
∆ii = g

(
x1 −

∆1i√
∆11

, · · · , xn −
∆ni√
∆nn

;M
)

, we

finally obtain

nj(t) =
∫

It

dNxg

(
x1 −

∆1i√
∆11

, · · · , xn −
∆ni√
∆nn

;M
)

∂Φ (y)
∂yj

∣∣∣∣
y=PT0

with

PT0 (t,x) =
(

1, e
√

∆11x1− 1
2
∆11

P (t, T1)
P (t, T0)

, · · · , e
√

∆NNxN− 1
2
∆NN

P (t, TN )
P (t, T0)

)
It = {x ∈ Rn : Φ (PT0 (t,x)) > 0}

Proof of Theorem 3

The equivalent martingale measure is unique if and only if Θt is injective for each t. As in the proof

of Theorem 2, Θt is injective if and only if Ht = Im Θt =
{
κt ∈ L2 (R+) : κt =

∑∞
i=0 (fi,t, κt) fi,t

}
.

22


